Signal Slot Qt Python

EnArBgDeElEsFaFiFrHiHuItJaKnKoMsNlPlPtRuSqThTrUkZh

This page was used to describe the new signal and slot syntax during its development. The feature is now released with Qt 5.

Use Signals and Slots Editing Mode for connecting predefined Qt signals directly to predefined Qt slots. So for 'Close' button on a simple dialog, you can just drag a connection from the button to the dialog, select the clicked signal and the reject slot, click 'OK', and there would be nothing more to do. Whether you play on an iPhone or Python Qt Signal SlotAndroid, mobile gambling apps offer top graphics, smooth software and best of all, you can play everywhere.

  • Differences between String-Based and Functor-Based Connections (Official documentation)
  • Introduction (Woboq blog)
  • Implementation Details (Woboq blog)

Note: This is in addition to the old string-based syntax which remains valid.

PyQt5 signals and slots Graphical applications (GUI) are event-driven, unlike console or terminal applications. A users action like clicks a button or selecting an item in a list is called an event. If an event takes place, each PyQt5 widget can emit a signal. Today, we're going to discuss the Python/Qt way of allowing your application to respond to user-triggered events: signals and slots. When a user takes an action — clicking on a button, selecting a value in a combo box, typing in a text box — the widget in question emits a signal. Connecting in Qt 5. There are several ways to connect a signal in Qt 5. Qt 5 continues to support the old string-based syntax for connecting signals and slots defined in a QObject or any class that inherits from QObject (including QWidget).

  • 1Connecting in Qt 5
  • 2Disconnecting in Qt 5
  • 4Error reporting
  • 5Open questions

Connecting in Qt 5

There are several ways to connect a signal in Qt 5.

Python Qt Signal Slot

Old syntax

Qt 5 continues to support the old string-based syntax for connecting signals and slots defined in a QObject or any class that inherits from QObject (including QWidget)

New: connecting to QObject member

Here's Qt 5's new way to connect two QObjects and pass non-string objects:

Pros

  • Compile time check of the existence of the signals and slot, of the types, or if the Q_OBJECT is missing.
  • Argument can be by typedefs or with different namespace specifier, and it works.
  • Possibility to automatically cast the types if there is implicit conversion (e.g. from QString to QVariant)
  • It is possible to connect to any member function of QObject, not only slots.

Cons

  • More complicated syntax? (you need to specify the type of your object)
  • Very complicated syntax in cases of overloads? (see below)
  • Default arguments in slot is not supported anymore.

New: connecting to simple function

The new syntax can even connect to functions, not just QObjects:

Python

Pros

  • Can be used with std::bind:
  • Can be used with C++11 lambda expressions:

Cons

  • There is no automatic disconnection when the 'receiver' is destroyed because it's a functor with no QObject. However, since 5.2 there is an overload which adds a 'context object'. When that object is destroyed, the connection is broken (the context is also used for the thread affinity: the lambda will be called in the thread of the event loop of the object used as context).

Disconnecting in Qt 5

As you might expect, there are some changes in how connections can be terminated in Qt 5, too.

Old way

You can disconnect in the old way (using SIGNAL, SLOT) but only if

  • You connected using the old way, or
  • If you want to disconnect all the slots from a given signal using wild card character

Symetric to the function pointer one

Only works if you connected with the symmetric call, with function pointers (Or you can also use 0 for wild card)In particular, does not work with static function, functors or lambda functions.

New way using QMetaObject::Connection

Works in all cases, including lambda functions or functors.

Asynchronous made easier

With C++11 it is possible to keep the code inline

Here's a QDialog without re-entering the eventloop, and keeping the code where it belongs:

Another example using QHttpServer : http://pastebin.com/pfbTMqUm

Error reporting

Tested with GCC.

Fortunately, IDEs like Qt Creator simplifies the function naming

Missing Q_OBJECT in class definition

Type mismatch

Open questions

Default arguments in slot

If you have code like this:

The old method allows you to connect that slot to a signal that does not have arguments.But I cannot know with template code if a function has default arguments or not.So this feature is disabled.

There was an implementation that falls back to the old method if there are more arguments in the slot than in the signal.This however is quite inconsistent, since the old method does not perform type-checking or type conversion. It was removed from the patch that has been merged.

Overload

As you might see in the example above, connecting to QAbstractSocket::error is not really beautiful since error has an overload, and taking the address of an overloaded function requires explicit casting, e.g. a connection that previously was made as follows:

connect(mySpinBox, SIGNAL(valueChanged(int)), mySlider, SLOT(setValue(int));

cannot be simply converted to:

...because QSpinBox has two signals named valueChanged() with different arguments. Instead, the new code needs to be:

Unfortunately, using an explicit cast here allows several types of errors to slip past the compiler. Adding a temporary variable assignment preserves these compile-time checks:

Some macro could help (with C++11 or typeof extensions). A template based solution was introduced in Qt 5.7: qOverload

The best thing is probably to recommend not to overload signals or slots …

Python Qt Signal Slot Example

… but we have been adding overloads in past minor releases of Qt because taking the address of a function was not a use case we support. But now this would be impossible without breaking the source compatibility.

Signal Slot Qt Python Code

Disconnect

Should QMetaObject::Connection have a disconnect() function?

The other problem is that there is no automatic disconnection for some object in the closure if we use the syntax that takes a closure.One could add a list of objects in the disconnection, or a new function like QMetaObject::Connection::require


Qt For Python Signal Slot

Callbacks

Function such as QHostInfo::lookupHost or QTimer::singleShot or QFileDialog::open take a QObject receiver and char* slot.This does not work for the new method.If one wants to do callback C++ way, one should use std::functionBut we cannot use STL types in our ABI, so a QFunction should be done to copy std::function.In any case, this is irrelevant for QObject connections.

Retrieved from 'https://wiki.qt.io/index.php?title=New_Signal_Slot_Syntax&oldid=34943'
Qt for python signal slot
  • PyQt Tutorial
  • PyQt Useful Resources
  • Selected Reading

Unlike a console mode application, which is executed in a sequential manner, a GUI based application is event driven. Functions or methods are executed in response to user’s actions like clicking on a button, selecting an item from a collection or a mouse click etc., called events.

Widgets used to build the GUI interface act as the source of such events. Each PyQt widget, which is derived from QObject class, is designed to emit ‘signal’ in response to one or more events. The signal on its own does not perform any action. Instead, it is ‘connected’ to a ‘slot’. The slot can be any callable Python function.

In PyQt, connection between a signal and a slot can be achieved in different ways. Following are most commonly used techniques −

A more convenient way to call a slot_function, when a signal is emitted by a widget is as follows −

Suppose if a function is to be called when a button is clicked. Here, the clicked signal is to be connected to a callable function. It can be achieved in any of the following two techniques −

or

Example

In the following example, two QPushButton objects (b1 and b2) are added in QDialog window. We want to call functions b1_clicked() and b2_clicked() on clicking b1 and b2 respectively.

When b1 is clicked, the clicked() signal is connected to b1_clicked() function

When b2 is clicked, the clicked() signal is connected to b2_clicked() function

Example

The above code produces the following output −

Signal Slot Qt Python Example

Output